The Great Columbia Flood: An Epic Geologic Event that Shaped Landforms and Ideas
Columbia Magazine, Spring 2005: Vol. 19, No. 1

By Tom Mullen

Next to the Columbia River, south of the Yakama Indian Reservation in Washington, sits a little park near the community of Roosevelt. On the grass rests an angled boulder half the size of a Volkswagen Beetle. A sign before this rock explains that it originated upriver but was transported downstream thousands of years ago by the Spokane Flood. This makes it an "erratic," one of many displaced boulders scattered throughout the Columbia River Gorge and across the landscape stretching from Lake Pend Oreille in Idaho south to Eugene, Oregon.

An inspection of these erratics made one geologist particularly curious. What forces, he asked himself, were strong enough to carry rocks, some weighing 200 tons and the size of a master bedroom, hundreds of miles from their point of origin? This geologist was J. Harlen Bretz, a Seattle schoolteacher who left his job to study for a doctorate in geology at the University of Chicago. In the summer of 1922 he returned to the Pacific Northwest to eastern Washington to perform field research. For seven summers Bretz continued this work, picking at rocks and crystals that kept him curious about what forces wrenched this land into its convoluted shape. Bretz named the gnarled geology of eastern Washington the Channeled Scablands, describing it thus: "Like great scars marring the otherwise fair face of the plateau are these elongated tracts of bare, or nearly bare, black rock carved into mazes of buttes and canyons." John Elliot Allen and Marjorie Burns recount his adventures in their book, Cataclysms on the Columbia:

Bretz's earliest investigation was all by foot; he could not at first afford a car; but even later, when he acquired an early model, enclosed body Dodge, much of the Scablands was nonetheless inaccessible to motor vehicles. Either way, by foot or car, Bretz and his party (typically composed of wife, son, daughter, collie dog, and a collection of students) were primarily limited to sighting across the broken and fragmented expanse of the Scablands.

Without the aid of satellite photographs, Bretz used his memory and field notes to piece together an overview of eastern Washington's features. The more he looked at dry waterfalls and channeled topography, the more convinced he became that this region once hosted a natural catastrophe of epic proportions.

Several things led him to this conclusion. Bretz wondered why canyon mazes were braided throughout the Channeled Scablands. Erosion was too slow to have created their appearance. Rivers usually munch away at their beds and banks, cutting downward to form a single, deepened channel as their path. But the scablands looked too rough, gouged, and slipshod to be caused by simple erosion. The land appeared as though carved by some quick, strong, sloppy force.

With maps in hand, huffing over this bizarre landscape, Bretz also inspected potholes such as those at Quincy Basin near Grand Coulee. When a river rushes, it carries stones that swirl around eddies, eroding
surrounding rock and eventually creating bowl-shaped depressions. Bretz was acquainted with such potholes. But their dimensions in eastern Washington acres in size were outrageous. Again, Bretz wondered what mighty force could have created them.

Another eastern Washington landscape feature that perplexed Bretz was the profusion of huge dry waterfalls that looked as though they were lifted from a land of giants. Dry Falls in Grant County, north of Pasco, stands 400 feet high and some three and a half miles wide. Although the falls are now dry, Bretz thought the quantity of water that ran there must have been immense.

In addition to scoured channels, gargantuan potholes, and massive dry waterfalls, the erratic rocks transported down the Columbia River Gorge mystified Bretz. Respecting the value of field work and common sense, Bretz matched the land he viewed with knowledge gained from education, then formulated a theory about how this oddly shaped geography gained its features. He concluded that the force that ripped, shook, carved, and blasted this landscape thousands of miles in area must have been a flood.

Bretz knew that his theory had two problems. The first was one of perception. His notion was untimely. In the geological community, floods and catastrophes were out of vogue as significant agents of topographic change. The more biblically aligned theories of cataclysms having shaped earth's features (including Noah's flood) had been replaced by a more moderate precept of "gradualism," in which erosion and long stretches of time were the principal devourers and builders of canyons and mountains. Gradualism implied that earth's topography was molded at an infinitesimally slow rate over many millennia. Bretz knew that his flood theory was likely to be met with skepticism.

A second problem was physical. Where could the water for such a huge flood have originated? What prehistoric lake could have supplied enough liquid to crash down river carrying 10 times the volume of all the rivers on earth combined? Uncertain of the answer, Bretz considered glacial runoff from the Cordilleran ice sheet during the last ice age as a possible source.

In 1923 Bretz published two papers. In one of them he mentioned his belief that the scabland features were caused by what he called the "Spokane Flood." As expected, his fellow geologists and former students attacked the theory. In 1927 colleagues invited Bretz to Washington, D.C., to speak about his flood, then took turns bashing the theory. In the face of overwhelming disdain, Bretz stood his ground. He suggested that his critics consider the big picture of how the scablands were formed and not just apply inadequate theories about how fragments of the land's features originated. As always, he grounded his answers in field experience.

After Bretz proposed his flood theory, a simple question loomed: where did the water come from? In 1910, more than a decade before Bretz proposed his theory, a geologist named Joseph Thomas Pardee described ancient Lake Missoula. This great glacial lake existed in the late Pleistocene epoch, before the last ice age began receding some 15,000 years ago. Pardee wrote to Bretz in 1925, suggesting that he consider waters from glacial Lake Missoula as the source of his flood. However, Bretz did not actively pursue this possibility.

In 1940 Pardee presented a paper at a meeting in Seattle, Washington, of the American Association for the Advancement of Science. He unveiled evidence showing how ancient Lake Missoula could have been the flood source that carved the scablands into their intricate forms. Pardee's approach was low key, but the facts in his paper, "Ripple Marks in Glacial Lake Missoula," riveted the audience. He described wave marks in the land "features 15 meters high, spaced roughly 150 meters apart" carved by an ancient surge of water. In the decades following this presentation, Bretz's flood theory finally gained universal acceptance.
The most recent ice age, the Pleistocene, began 2 million years ago. During this era virtually all of Canada was repeatedly covered by glacial ice sheets "slow-moving rivers of ice" which also covered Alaska, Idaho, Montana, and northern Washington. Over time glaciers advanced and retreated, the most recent advance reaching farthest south about 15,000 years ago. Ice moved through the Purcell Trench in northern Idaho near today's Lake Pend Oreille. It dammed the Clark Fork River in northwestern Montana and created Lake Missoula behind a 2,500-foot wall of ice. In other words, this glacial lake was created when the Cordilleran Ice Sheet branched into the Bitterroot Mountains and plugged up Clark Fork River. The backed up waters ran thousands of feet deep and comprised a volume of 500 cubic miles, a quantity equal to that held today in lakes Erie and Ontario combined.

Between 13,000 and 17,000 years ago, Lake Missoula covered 3,000 square miles of land. As the lake water deepened, it put pressure on the ice dam, forcing water to slip under the ice and eventually causing the dam to fail catastrophically. This break hurled almost 400 million cubic feet of water per second across eastern Washington, a deluge that raced at speeds up to 65 miles per hour, with a volume 60 times the flow of the Amazon River. The flood whooshed across more than 400 miles of the state. Imagine the volume of 10 times all the rivers on earth rushing at once across the Columbia Plateau enough liquid to inundate 16,000 square miles in silt-fogged water hundreds of feet deep. This flood wrenched 50 cubic miles of sediment out of its path and carved chunks of Washington and Oregon into fluted channels.

In the 1950s geologists realized that several such floods had flowed over thousands of years. Layered sediment deposits indicate that not one but perhaps as many as 40 such floods had run across these lands.

Bretz withstood decades of criticism before his theory was embraced. The rebuttals he faced were similar to those thrown at Alfred Wegener, a German climatologist who proposed a new, monumentally significant theory of geology. For years before Wegener was born in 1880, cartographers making maps of the world noticed how Africa and America looked as though they were once joined. Yet the majority of the scientific community - renowned and educated specialists - considered this possibility nonsensical. In his 1915 book, The Origin of Continents and Oceans, Wegener wrote that 200 million years ago the continent of Pangaea broke into two lesser continents - Laurasia and Gondwanaland. Twenty million years later, these two smaller continents split apart again. He postulated that these pieces have constantly drifted over a basaltic ocean floor to become the continents that exist today.

In 1924, just a year after Harlen Bretz published his paper about the scablands, Wegener's book was translated into English. Like Bretz, he was bombarded by criticism. Wegener perished on the snows of Greenland in 1930, by which time his Continental Drift theory had been largely forgotten. It was not until the 1950s that the theory was revived, accepted, and used as the basis for a modified theory of plate tectonics that is now unquestioned.

Acceptance of Wegener's theory vindicated a centuries-old suspicion bolstered by common sense: any child looking at a map of the world can see that certain continents look as though they were once joined. In a similar way, any geologist regarding a vista of the entire Channeled Scablands would see that they appeared - as Bretz noticed - to have been formed by a massive deluge.

Bretz was more fortunate than Wegener in that he lived long enough to see his theory accepted. In 1979, when Bretz was over 90 years old, the Geological Society awarded him the Penrose Medal, the nation's highest geological award. A plaque dedicated to Harlen Bretz in 1994 states that he "patiently taught us that catastrophic floods may sometimes play a role in nature's unfolding drama." On that plaque there is a quotation from Bretz, one that Wegener certainly would have agreed with:
"Ideas without precedent are generally looked upon with disfavor and men are shocked if their conceptions of an orderly world are challenged."

Although his theory was at first unpopular, Bretz believed the evidence provided by field research. His decades of patient persistence were well rewarded.

Tom Mullen spent over a decade working as a water resources consultant in Africa, Asia, Latin America, the Middle East, and the United States. He is author of Rivers of Change: Trailing the Waterways of Lewis and Clark (2004).

MLA Citation: